Unexpected tautomeric equilibria of the carbanion-enamine intermediate in pyruvate oxidase highlight unrecognized chemical versatility of thiamin.

نویسندگان

  • Danilo Meyer
  • Piotr Neumann
  • Eline Koers
  • Hanno Sjuts
  • Stefan Lüdtke
  • George M Sheldrick
  • Ralf Ficner
  • Kai Tittmann
چکیده

Thiamin diphosphate, the vitamin B1 coenzyme, plays critical roles in fundamental metabolic pathways that require acyl carbanion equivalents. Studies on chemical models and enzymes had suggested that these carbanions are resonance-stabilized as enamines. A crystal structure of this intermediate in pyruvate oxidase at 1.1 Å resolution now challenges this paradigm by revealing that the enamine does not accumulate. Instead, the intermediate samples between the ketone and the carbanion both interlocked in a tautomeric equilibrium. Formation of the keto tautomer is associated with a loss of aromaticity of the cofactor. The alternate confinement of electrons to neighboring atoms rather than π-conjugation seems to be of importance for the enzyme-catalyzed, redox-coupled acyl transfer to phosphate, which requires a dramatic inversion of polarity of the reacting substrate carbon in two subsequent catalytic steps. The ability to oscillate between a nucleophilic (carbanion) and an electrophilic (ketone) substrate center highlights a hitherto unrecognized versatility of the thiamin cofactor. It remains to be studied whether formation of the keto tautomer is a general feature of all thiamin enzymes, as it could provide for stable storage of the carbanion state, or whether this feature represents a specific trait of thiamin oxidases. In addition, the protonation state of the two-electron reduced flavin cofactor can be fully assigned, demonstrating the power of high-resolution cryocrystallography for elucidation of enzymatic mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Snapshot of a key intermediate in enzymatic thiamin catalysis: Crystal structure of the -carbanion of ( , -dihydroxyethyl)-thiamin diphosphate in the active site of transketolase from Saccharomyces cerevisiae

Kinetic and spectroscopic data indicated that addition of the donor substrate hydroxypyruvate to the thiamin diphosphate (ThDP)dependent enzyme transketolase (TK) led to the accumulation of the -carbanion enamine of ( , -dihydroxyethyl) ThDP, the key reaction intermediate in enzymatic thiamin catalysis. The threedimensional structure of this intermediate trapped in the active site of yeast TK w...

متن کامل

A versatile conformational switch regulates reactivity in human branched-chain alpha-ketoacid dehydrogenase.

The dehydrogenase/decarboxylase (E1b) component of the 4 MD human branched-chain alpha-ketoacid dehydrogenase complex (BCKDC) is a thiamin diphosphate (ThDP)-dependent enzyme. We have determined the crystal structures of E1b with ThDP bound intermediates after decarboxylation of alpha-ketoacids. We show that a key tyrosine residue in the E1b active site functions as a conformational switch to r...

متن کامل

The catalytic cycle of a thiamin diphosphate enzyme examined by cryocrystallography.

Enzymes that use the cofactor thiamin diphosphate (ThDP, 1), the biologically active form of vitamin B(1), are involved in numerous metabolic pathways in all organisms. Although a theory of the cofactor's underlying reaction mechanism has been established over the last five decades, the three-dimensional structures of most major reaction intermediates of ThDP enzymes have remained elusive. Here...

متن کامل

Computational Study on the Energetic and Electronic Aspects of Tautomeric Equilibria in 5-methylthio-1,2,4-triazole

The main purpose of this research is to investigate computationally the tautomeric reaction pathway of 5-methyl-3-methylthio-1,2,4-triazole from the thermodynamical and mechanistical viewpoints. In this respect, density functional theory (DFT) in conjunction with the quantum theory of atoms in molecule (QTAIM) has been employed to model the energetic and electronic features of tautomeric mechan...

متن کامل

Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.

The thiamin diphosphate (ThDP)- and flavin adenine dinucleotide (FAD)-dependent pyruvate oxidase from Lactobacillus plantarum catalyses the conversion of pyruvate, inorganic phosphate, and oxygen to acetyl-phosphate, carbon dioxide, and hydrogen peroxide. Central to the catalytic sequence, two reducing equivalents are transferred from the resonant carbanion/enamine forms of alpha-hydroxyethyl-T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 27  شماره 

صفحات  -

تاریخ انتشار 2012